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Abstract: - The problem of control systems design for nonlinear plants still has no exhaustive solution. This 
problem is commonly solved on the basis of transformation of the nonlinear plant equations to some simple. 
Such approach simplifies the solution of the control system design problem and makes the solution analytical. 
For design of the optimal control systems for the nonlinear plants, their equations are expedient to transform to 
Jordan controlled form (JCF). The analytical design method of the optimal control systems for nonlinear plants 
with using the JCF of their equations is proposed in this paper. This problem has a solution if all plant state 
variables are measured. The JCF exists, if the nonlinear plant is completely controllable. The proposed method 
includes two steps. At the first step, a linearization control is designed by a nonlinear reversible transformation of 
the plant state variables. Under the linearization control, the system equations are linear and stationary in the new 
variables. Theorem about existence of a linearization control is proved. At the second step, the optimal control is 
designed as optimal in the sense of a minimum of nonlinear quadratic criteria. This control is designed using 
solution of the Riccati equation. Optimality of the obtained nonlinear control is proved also. Design of the 
optimal control systems for nonlinear plants using JCF is expedient, because the equations of many real plants 
have JCF or can be easily transformed to this form. Frequently, the plant equations convert into this form if the 
state variables are designated in appropriate way. The example of the optimal control system design for 
nonlinear plant is given. 
 

 

Key-Words: - Nonlinear plant, reversible transformation, Jordan controlled form, linearization control, optimal 
control, nonlinear quadratic criteria. 
 

1 Introduction 
The method of the plant equations transformation to 
some simple form is widely used for solution of the 
design problem of the nonlinear control systems. 
This approach simplifies the solution of the design 
problem and makes it analytical. The choice of the 
suitable form to which the plant equations 
transformation is more convenient is the basic 
difficulty of this approach. Corresponding methods 
for transformation of the equations are known 
usually. However, when the plant equations are in 
general form, the process of their transformation to 
the chosen form is rather difficult [1 – 5]. 

In nonlinear cases, the equations are transformed 
to the normal canonical control form [1 – 3], 
triangular form [4, 5], Lukyanov-Utkin regular form 
[6], Jordan controlled form [7, 8], and others. If 
equations of the plant are represented in the 
triangular form, the backstepping method to design 
an adaptive control system is applied very easily [4, 
5]. The Lukyanov-Utkin regular form of the plant 

equation allows decoupling the initial problem of a 
control system design on several tasks of the smaller 
dimension [6]. If the equations of a nonlinear plant 
are converted to JCF, then the control providing 
stability of the system equilibrium or full 
compensation of  influence of the bounded external 
disturbances is designed easily [7, 8].  

Optimal control systems also can be designed 
using JCF. Usually the optimal control systems for 
the nonlinear plants are designed with application of 
the first approximation equations [9] or an 
approximate solution of the nonlinear differential 
Hamilton-Jacobi-Bellman equation [3, 9]. However, 
in this case, the basic advantages of the optimal 
approach – analyticity and simplicity are lost and 
control received by such way is not optimal. 

The optimal control systems for nonlinear plants 
are designed by the transformation method usually 
in two steps. At the first step a linearization control 
is designed. Optimal control is designed at the 
second step [10].  
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In this paper the analytical design method of the 
optimal control systems for the nonlinear plants, 
whose equations are converted to JCF, is considered. 
The optimal control is designed by this method in 
two steps also. The linearization control is 
constructed analytically on the basis of the 
stabilizing control which was proposed in [7]. 
Optimal control in the sense of a minimum of 
nonlinear quadratic criteria is designed at the 
second step with using solution of the Riccati 
equation [1, 11]. Therefore, the design 
procedure of the nonlinear optimal control 
systems is analytical. Desirable character of the 
system transient processes is provided by the 
appropriate choice of the nonlinear quadratic 
criteria coefficients as in the linear case [12]. 
The proposed method is important for practice, 
because the equations of many real plants have 
JCF or can be converted to this form by change of 
the state variables designations or by a nonlinear 
transformation [7, 12].  

The paper is organized as follows. In section 
2 the mathematical definition of the JCF of plants 
equations and formulation of the considered 
problem are given. The proposed method of the 
optimal control systems design is considered in 
section 3. In subsection 3.1 the design method of 
a linearization control is considered. The basic 
paper result is the method of the optimal control system 
design is stated in subsection 3.2. The theorem about 
optimality of the received control is proved here. An 
example of the optimal control system design for 
nonlinear plant is given in subsection 3.3. The 
concluding remarks are given in the last section. 
 
 

2 JCF and Problem Formulation 
Suppose some plant with a single control input is 
described by the equation 

0( ) nx f x e u= +ɺ ,                              (1) 

where nx R∈  is the state vector; 

1 2 2 3 1( ) [ ( ) ( ) ( ) ( )]T
n n n nf x f x f x f x f x−= …  is the 

nonlinear vector-function; 1( )i if x +  is an scalar, 

continuous function which is differentiable n i−  times 

on all its arguments; 1[ ]T
i ix x x= …  is a sub vector 

including the first i state variables 1, , ix x… ; evidently 

nx x=  ; ne  is n-th column of an identity n n× -matrix; 

0 0 ( )u u x=  is the scalar control. 

Let 0( , )x x t u=� � �  be a vector that describes the 

unperturbed motion of the system (1); 0u�  is an 

appropriate control.  

Let's enter a vector of deviations x x x= − �
ɶ and a 

deviation 0 0u u u= − �  of the control. For clarity, the 

equations of the system (1) in deviations are expressed 
in a scalar form: 

1 1( , , )i i ix x x += φɺɶ ɶ ɶ… ,    1,1 −= ni ,          (2) 

1( , , )n n nx x x u= φ +ɺɶ ɶ ɶ… ,   Tу c x= ɶ ,          (3) 

where i i ix x x= − �
ɶ  is the deviation of the state variable 

ix , 1,i n= ; 1 1 1 1 1( , , ) ( ) ( ) ( )i i i i i i i ix x f x f x x+ + + +φ = − =φ�
ɶ ɶ ɶ… , 

1, 1i n= −  and 1( , , ) ( ) ( ) ( )n n n n nx x f x f x xφ = − =φ�
ɶ ɶ ɶ… ; 

1[ ]T
i ix x x=ɶ ɶ ɶ… ; ( )u u x= ɶ  is control action. The 

variables ixɶ , are measured and (0) 0iφ = , ni ,1= ;  

nx x=ɶ ɶ  evidently. 

The control design problem for equations (2), (3) has 

a solution only when for all 1,1 −= ni , 

1 1

1

( , , )
0i i

i

x x

x

+

+

∂φ
≥ ε ≠

∂

ɶ ɶ…

ɶ
,   n

xx R∈Ω ∈ɶɶ ,   (4) 

where ε  there is any positive number; x~Ω  is some 

domain of the space nR . This domain should include an 
equilibrium 0x =ɶ .   

Definition: If the equations (2), (3) satisfy conditions 
(4), they are called Jordan controlled form [7, 8, 12]. 

Evidently, the canonical Frobenius form of the 
system or plant equations is a special case of JCF, 
where 0 1 1 2 1( )n n nx x x x−φ = −α − α − − αɶ ɶ ɶ ɶ… ; 

1( )i ix x +φ =ɶ ɶ , 1,1 −= ni   (for 1>n ) [2, 7]. 

The design problem consists in the definition of an 
optimal control ( )optu u x= ɶ  under which the uncertain 

nonlinear quadratic criteria J  satisfies to the next 
condition  

2 2
1

0

[ ( ) ( )( ) ] minT
lin

u
J x Q x x x u u dt

∞

= + ργ − →∫ ɶ ɶ ɶ ɶ   (5)    

for all n
xx R∈Ω ∈ɶɶ . Here ( ) ( ) ( )TQ x S x QS x=ɶ ɶ ɶ ; 

0Q ≥  is a constant, symmetric, nonnegative matrix 

and 0ρ >  is a positive number.  

The matrix ( )S xɶ , the function 1( )xγ ɶ  and the 

control ( )linu xɶ  will be determined later. Values of 

the number ρ  and coefficients of the matrix Q  are 

chosen according to desirable character of the 
system transient process. 
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3 Problem Solution 
The plant equations are supposedly submitted in 
JCF. Therefore the optimum control system is 
designed in two steps. At the first step, a linearization 
control is constructed on the basis of the stabilizing 
control and transformation of the received system 
equations to the new variables. The stabilizing 
control was proposed in [7]. Existence of the 
linearization control is caused by Jordan canonical 
form of the plant equations (2), (3).  

Optimal control is designed at the second stage. 
The optimality of this control is proved by using an 
optimality condition from [13, p. 322]. Let’s pass to 
implementation of this approach. 
 
 
3.1 Linearization control design 
To solve this problem the new state vector 

1 2( ) [ ( ) ( ) ( )]T
nw w x w x w x w x= = …ɶ ɶ ɶ ɶ  is 

determined as follows: 11
~xw = ,   

 
1

1
1 1 1 1

1

( ) ( ) ( )
i

i
i i i i i

w
w x x w x

x

−
−

ν ν+ − − −
ν= ν

∂
= φ + λ

∂∑ɶ ɶ ɶ
ɶ

,     (6) 

ni ,2= ; here and further iλ  is any constant, 1,i n= .  

The transformation ( )w xɶ  (6) is continuous, 

bounded and reversible by virtue of the conditions (4). 

As the functions 1( )i ix +φ ɶ , 1, 1i n= −  are 

differentiable and (0) 0w = , the nonlinear 

transformation ( )w w x= ɶ  (6) in domain n
x RΩ ∈ɶ  

can be presented in the quasilinear form:  

( )w S x x= ɶ ɶ ,                            (7) 

where ( )S xɶ  is an n n× -matrix and det ( ) 0S x ≠ɶ  

[12]. Therefore in domain n
x RΩ ∈ɶ  there is a 

bounded, reverse transformation 1( ) ( )x S x w x−=ɶ ɶ ɶ , 

where the vector ( )w xɶ  is defined by expressions 

(6). At these conditions the stabilizing control u for the 
plant (2), (3) can be defined by the expression 

[ ]1 1
1 2 1( ) ( ) ( ) ( ) ( )n n nu x x w x x x v− −= −γ γ + λ −φ + γɶ ɶ ɶ ɶ ɶ ,  (8) 

where 
1

1
1

1 1

( ) ( )
( )

n
n i i

in i

w x x
x

x x

−
+

= +

∂ ∂φ
γ = =

∂ ∂∏
ɶ ɶ

ɶ
ɶ ɶ

;           (9) 

1

2 1
1

( )
( ) ( )

n
n

i i

i i

w x
x x

x

−

+
=

∂
γ = φ

∂∑
ɶ
ɶɶ ɶ

ɶ
,   xx∈Ω ɶɶ ;     (10) 

ν  is new control – some function of xɶ  or time t . 
Theorem 1: If in some domain xΩ ɶ  the condition 

(4) is satisfied and the control u is defined by the 
expressions (8) – (10), the equations of the system 

(2), (3), (8) concerning to vector w are linear and 
have the following kind: 

n nw w e v= Λ +ɺ ,                     (11) 

where [0 0 1]T
ne = … , 

1

1

1 0

0 0

1

0 0

n

n

−λ 
 −λ Λ =
 
 

−λ 

…

⋱

⋮ ⋮ ⋱

…

.                (12) 

Proof: The expression (6) in the form of (2) 
where 2, 3, , 1i n= −…  can be presented as follows: 

2 1 1 1w w w= +λɺ , 

3 2 2 2w w w= + λɺ ,… ,  1 1 1n n n nw w w− − −= + λɺ . (13) 

Further, we will substitute control ( , )u u x= νɶ  (8) in 

the form of (10) into the equation (3) and we will 
multiply both its parts on 1( )xγ ɶ . As result, we will 

obtain equation  
1

1 1
1

( )
( ) ( ) ( )

n
n

n i i n n

i i

w x
x x x w x v

x

−

+
=

∂
γ = − φ −λ +

∂∑
ɶ
ɶɺɶ ɶ ɶ ɶ

ɶ
. (14) 

According to the equation (9) 1( ) ( ) /n nx w x xγ = ∂ ∂ɶ ɶ ɶ , 

therefore the equation (14) can be copied so 
1

1
1

( ) ( )
( ) ( )

n
n n

i i n n n

i i n

w x w x
x x w x v

x x

−

+
=

∂ ∂
φ + = −λ +

∂ ∂∑
ɶ ɶ
ɶ ɺɶ ɶ ɶ

ɶ ɶ
.  (15) 

The left part of the equation (15), evidently, is the 
time derivative of the variable nw , therefore it can 

be written down as follows: n n nw w v= −λ +ɺ . Now 

the statement of the theorem 1 follows from last 
equality and from the expressions (13). Theorem 1 

is proved. 

The matrix nΛ  (12), where iλ = −λ , 1,i n= , 

evidently coincides with the Jordan cell of size 
n n×  [14, p. 142]. Therefore, (2), (3) with (4) in 

some domain Ω n
x R∈
ɶ

 referred to as Jordan 

controlled form.  
Evidently, the system (11), (12) is asymptotically 

stable if 0iλ ≥ ε > , 1,i n= . Since the transformation 

(7) is reversible, the equilibrium 0x =ɶ  of the system 

(2) – (4), (8) – (10) with 0iλ ≥ ε > , 1,i n=  is also 

asymptotically stable in the domain Ω n
x R∈
ɶ

. 

Therefore, control (8) – (10) under the mentioned 
above conditions is stabilizing.   

However, the expressions (8) – (15) are carried 

out by all values iλ , including 0iλ = , 1,i n= . In 

this case, the nonlinear system (2), (3), (8) in 
variables iw  is described by the linear equations 

(11), (12) with 0iλ = , 1,i n= . Hence for an 
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nonlinear plant (2), (3), (4) the linearization control 
can be defined by the expression  

1
1 ( )linu u x v−= + γ ɶ ,  1

1 2( ) ( ) ( )lin nu x x x−=−γ γ −φɶ ɶ ɶ ,  (16) 

where 

1 1w x= ɶ ,  
1

1
1

1

( ) ( )
i

i
i i

w
w x x

x

−
−

ν ν+
ν= ν

∂
= φ

∂∑ɶ ɶ
ɶ

,  2,i n= ,  (17) 

the functions 1( )xγ ɶ , 2 ( )xγ ɶ  are determined still by 

the expressions (9), (10). 
The linearization control (16), (17), (9), (10) is 

used for design of the control which is optimal in 
the sense of a minimum of the nonlinear quadratic 
criteria J (5). 
 
 
3.2 Optimal control system design 
First of all, we stipulate that the nonlinear quadratic 
criterion J (5) is completely certain now, as the 
matrix ( )S xɶ  and the function 1( )xγ ɶ  are determined 

by expression (7) and by equality (9). 
For solution of the optimization problems (2) – (5), 

the control ( )u u x= ɶ  is taken as (16). Equations (2), (3) 

with 1
1 ( )linu u x v−= + γ ɶ  are given as follows: 

( )lin nx x e v= φ +ɺɶ ɶ  ,                     (18) 

where ( ) ( ) ( )lin n linx x e u xφ = φ +ɶ ɶ ɶ .   

According to the theorem 1, the equation (18) 
concerning the vector w (17) looks like: 

n nw w e v= Λ +ɺ ,   

0 1 0

0 0 0

1

0 0 0

n

 
 
 Λ =
 
 
 

…

⋱

⋮ ⋮ ⋱

…

,     (19) 

where 1 ( )
( ) ( )

x S x w
v v w v x −=
= =

ɶ ɶ
ɶ . 

As the system (19) is linear and stationary, the 
control providing a minimum of quadratic criterion 

2

0

[ ( )]TJ w Qw v w dt

∞

= + ρ∫                    (20) 

on trajectories of the system (19) is defined [11, p. 
275] by the expression 

1( ) T
opt nv w e P w

−= −ρ .                   (21) 

Here P is the symmetric, positive matrix. It is a solution 
of the Riccati equation 

1 0T T
n n n nP P Pe e P Q−Λ + Λ − ρ + = .          (22) 

Let Q  and ρ  in the equation (22) are the matrix and 

the number from the nonlinear quadratic criteria J (5). 
Then the solution of the optimization problem (2), 
(3), (5) under the condition (4) is defined by the 
following theorem. 

Theorem 2: Let the control ( )lin linu u x= ɶ  and the 

function 1( )xγ ɶ  are determined by the expressions 

(16), (9), the matrix ( )S xɶ  is from equality (7); the 

matrix Q  and the number ρ  are from the nonlinear 

quadratic criteria J (5) and P is the matrix Riccati 
equation (22). Then the optimal control, delivering a 
minimum of the nonlinear quadratic criteria J (5) on 
trajectories of the closed nonlinear system (2), (3), 
(4), is defined by the expression 

1 1
1( ) ( ) ( )T

opt lin nu u x x e P S x x
− −= − γ ρɶ ɶ ɶ ɶ .         (23) 

Proof: The system (19) with control optv v=  (21) 

is globally stable [11, p. 275]. The transformation 
( )w w x= ɶ  (17), similarly to (7), is reversible, 

continuous and bounded by virtue of the condition 
(4). Therefore, the equilibrium 0x =ɶ  of the system 
(2), (3) with optu u=  (23) is asymptotically stable in 

the domain n
x RΩ ∈ɶ . Hence, the integrals J (5) and 

J  (20) can be written down as follows: 
1

2 2
1

0

[ ( ) ( ) ( )( ) ]
t

T T
linJ x S x QS x x x u u dt= + ργ −∫ ɶ ɶ ɶ ɶ ɶ , (24) 

    
1

2

0

[ ]
t

TJ w Qw v dt= + ρ∫ ,                  (25) 

where 1t  there is a big enough number.   

Statement [13, p. 322]: If the certain integral  
1

1

0

( , )
t

J F w u dt= ∫  

has a minimum on an function u , then there is a 
positive number inε  such that  

1 1

1

0 0

( , )
( , ) 0

t t
F w u

J F w u dt u dt
u

∂
∆ = ∆ = δ >

∂∫ ∫ ,  (26) 

under any variation uδ , which satisfies inequality 

0 inu< δ < ε .                           (27) 

Here uδ  is a variation of the function u .  

The partial derivative and variation, contained in 
(26), concerning to the integral (25) and function v 
are determined by expressions: 

( , )
2 2 T

n

F w v
v e P w

v

∂
= ρ = −

∂
,  1 T

nv e P w−δ = −ρ δ , 

where 1 2[ ]T
nw w w wδ = δ δ δ…  is any variation 

of the vector w. 
Integral (25) under the theorem 3.7 [11, p. 275] 

has a minimum by the control ( )optv v w=  (21). 

Therefore, according to the inequalities (26), (27) 
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there is a number inε  such that the next inequalities 

are carried out 
1

1

0

2 0
t

T T
n nJ e P w e P wdt−∆ = ⋅ρ δ >∫ , 

10 T
n ine P w−< ρ δ < ε .                 (28) 

Let 0x xΩ ∈Ωɶ ɶ  be an attraction domain of the 

equilibrium of the stable system (2), (3), (23). 
Vectors ( )w t  and ( )x tɶ  are bounded if vector 

0(0) xx ∈Ω ɶɶ . The transformation ( ) ( )w w x S x x= =ɶ ɶ ɶ  

is reversible and the matrix ( )S xɶ  is bounded and 

differentiable on xɶ  at domain xΩ ɶ . In these 

conditions, variations of the vectors w  and xɶ  are 
connected by expression 

[ ( ( )) ] ( )T T Tw x S x S x x ′δ = + δ ɶ ɶ ɶ ɶ  [13]. Here 

( ( )) ( ) /T TS x S x x′ = ∂ ∂ɶ ɶ ɶ  is n n× -matrix; its ( , )i j -

element is the vector-line of a gradient ( ) /jiS x x∂ ∂  

and 1 2[ ]T
nx x x xδ = δ δ δɶ ɶ ɶ ɶ…  is a variation of the 

vector xɶ .  

Using expression [ ( ( )) ] ( )T T Tw x S x S x x ′δ = + δ   

we will present the inequalities (28) as follows: 

1

1

0

{ 2 ( ) }{ [ ( ( )) ]
t

T T T T T
n nJ e P S x x e P x S x−  ′∆ = − −ρ +∫ ɶ ɶ ɶ ɶ  

]( ) } 0S x x dt+ δ >ɶ ɶ , 

10 [ ( ( )) ] ( )T T T T
n ine P x S x S x x−  ′< ρ + δ < ε ɶ ɶ ɶ ɶ .  (29) 

Let's show, that conditions (26), (27) of a 
minimum of the nonlinear quadratic criteria J (5) on 
trajectories of the system (2), (3), (23) are similar to 
inequalities (29). Really, the function ( , )F w u  from 

the condition (26), (27) in case of the integral J (24) 
and control (23) looks like 

 2 2
1( , ) ( ) ( ) ( )( )T T

linF w u x S x QS x x x u u= +ργ −ɶ ɶ ɶ ɶ ɶ . 

Hence 

       2
1

( , )
2 ( )( )

opt
opt

lin
u u

u u

F w u
x u u

u =
=

∂
= ργ − =

∂
ɶ   

                      12 ( ) ( )T
nx e P S x x= − γ ɶ ɶ ɶ .   (30) 

The components linu  and 1 ( )xγ ɶ  are determined 

unequivocally by the given equations (2), (3), 
therefore, the variation optuδ  of the optimal control 

(23) is defined by the expression 

1 1
1( ) ( ) [ ( ( )) ] ( )T T T T

opt nu x x e P x S x S x x
− −  ′δ =−γ ρ + δ ɶ ɶ ɶ ɶ ɶ ɶ . (31) 

If to substitute the expressions (30), (31) in the 
inequalities (26), (27), the minimum conditions of 

the integral (24), which is equivalent to the criteria J 
(5), on the trajectories of the system (2), (3), (23) 
will coincide with inequalities (29) completely. Last 
inequalities are carried out as shown above; hence 
the conditions of a minimum of the nonlinear 
quadratic criteria J (5) on the trajectories of the 
system (2), (3), (23) are carried out also. The 

theorem 2 is proved.  
The received expressions (17), (9), (10), (7), 

(22), (23) are a theoretical basis of the proposed 
method of optimal control systems design for plants, 
which equations are submitted in JCF. This method 
is shown in the example below. 

 
 

3.3 An example 

Suppose, the plant is described by the equations 
2

1 2 32( )x x x= +ɺ , 2x u=ɺ ,  2
3 3 1(1 )x x x= +ɺ .     (32) 

It is necessary to find an optimal control by 
which the condition (5) is carried out with the 
number 1ρ =  and the matrix diag{4 2 1}Q = . 

The matrix ( )S xɶ  and the function 1( )xγ ɶ  are 

determined below. 
The form of the equations (32), evidently, does 

not meet JCF. When the equations (32) would 
have JCF, designations of the state variables 
change so: 1 2x x= ɶ , 2 3x x= ɶ , 3 1x x= ɶ . The resulting 

equations of the plant look like 
2

1 1 2 1(1 ) ( )x x x x= + = φɺɶ ɶ ɶ ɶ ;   

2
2 3 1 22( ) ( )x x x x= + = φɺɶ ɶ ɶ ɶ ;    3x u=ɺɶ .     (33) 

Equation (33) satisfy to the conditions (4), 

since 2
1 2 1/ 1x x∂φ ∂ = +ɶ ɶ  and 2 3/ 2x∂φ ∂ =ɶ  for any 

3x R∈ɶ , x < ∞ɶ . Therefore, these equations have 

JCF and the task has a solution. According to 
the proposed method, a linearization control is 
designed in beginning. For this purpose, the 
transformation (17) is determined for the 
equations (33): 

1 1w x= ɶ ,     2
2 1 2(1 )w x x= + ɶ ɶ ,   

3 2 2
3 1 1 1 1 1 2 32( ) 2(1 )( )w x x x x x x x= + + + +ɶ ɶ ɶ ɶ ɶ ɶ ɶ   

or in the vector-matrix form (7): 

( ) ( )w x S x x=ɶ ɶ ɶ ,                       (34) 

where 

    2
1

3 2
1 1 32 1

1 0 0

( ) 0 (1 ) 0

2( ) ( ) 2(1 )

S x x

x x x x

 
 

= + 
 + ψ + 

ɶ ɶ

ɶ ɶ ɶ ɶ

.    (35) 
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Here the function 2
32 1 1 2( ) 2(1 )x x x xψ = +ɶ ɶ ɶ ɶ . In this 

case 2 2
1det ( ) 2(1 ) 0S x x= + ≠ɶ ɶ . Therefore, the 

transformation (34), (35) is reversible and 

bounded for all 3x R∈ɶ , x < ∞ɶ . Functions 1( )xγ ɶ  

and 2 ( )xγ ɶ  are defined by the expression (9), 

(10) and (33) as:  
2

1 1( ) 2(1 )x xγ = +ɶ ɶ , 

  2
2 1 2 1 2 1( ) [ ( ) ( )](1 )x x x x x xγ = ζ + ζ +ɶ ɶ ɶ ɶ ɶ ɶ ,    (36) 

where     
2 2

1 1 1 2 3( ) 16 6 12x x x x xζ = + +ɶ ɶ ɶ ɶ ɶ , 

  3
2 1 2 2( ) 4 2x x x xζ = +ɶ ɶ ɶ ɶ .                (37)   

Now, according to the second expression (16), 
the linearization control will be written down as 

1 2 1 2( ) 0,5[ ( ) ( )]linu x x x x x= − ζ + ζɶ ɶ ɶ ɶ ɶ .      (38) 

Further, the control ( )optu xɶ  is determined. 

Solution of the Riccati equation (22), where matrix 

diag{4 2 1}Q =  and 1ρ = , is 

 

7,368 5,785 2

5,785 8,656 3,684

2 3,684 2,893

P

 
 =  
  

.        (39) 

So, according to the expressions (23), (38), the 

function 1( )xγ ɶ  (36), the matrices ( )S xɶ  (35) and P 

(39) the optimal control, at which the condition (5) 

satisfies with diag{4 2 1}Q =  and 1ρ = ,  

equals 

( ) ( ) ( )opt lin optu x u x v x= +ɶ ɶ ɶ ,             (40) 

where  
2 1 2 2

1 1 1 1 2( ) (1 ) 2,893(optv x x x x x x−= − + − + +ɶ ɶ ɶ ɶ ɶ ɶ  

3 2) 1,842x x+ −ɶ ɶ .        (41) 

Plots of the state variable 1( )x tɶ  and the control 

( )optu t  of the designed optimal system are shown on 

fig. 1 and fig. 2.  
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Fig.1 – State variable of the optimal system  
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Fig.2 – Optimal control  

 
The submitted plot are received by simulation in 

MATLAB of the optimal control system (33), (38) 
(40), (41) with initial conditions 

0 [0,9 0,5 0]Tx =ɶ . 

 
 

4 Conclusion 

If the equations of a nonlinear plant are convertible 
to Jordan controlled form, it is possible to find the 
stabilizing control or the control which is optimal in 
the sense of a minimum of uncertain nonlinear 
quadratic criteria. The optimal control is created in 
two steps. First, the linearization control is designed. 
Further, the optimal control is determined by the 
solution of the known Riccati equation. Proposed 
procedure of the optimal control system design is 
completely analytical. Desirable character of the 
optimal system transients can be found by change of 
the nonlinear quadratic criteria coefficients. The 
example of the optimal control system design is 
presented.   
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